Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments.

نویسندگان

  • Jonathan Z Kaye
  • John A Baross
چکیده

Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure and Temperature Adaptation of Cytosolic Malate Dehydrogenases of Shallow- and Deep-living Marine Invertebrates: Evidence for High Body Temperatures in Hydrothermal Vent Animals

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallowand deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressur...

متن کامل

Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents.

Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates,...

متن کامل

Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent.

A thermophilic, anaerobic, piezophilic, chemo-organotrophic sulfur-reducing bacterium, designated as KA3T, was isolated from a deep-sea hydrothermal chimney sample collected at a depth of 2630 m on the East-Pacific Rise (13 degrees N). When grown under elevated hydrostatic pressure, the cells are rod-shaped with a sheath-like outer structure, motile, have a mean length of 1-1.5 microm and stain...

متن کامل

Complete Genome Sequence of Hyperthermophilic Archaeon Thermococcus sp. EXT12c, Isolated from the East Pacific Rise 9°N

We report the genome sequence of Thermococcus sp. EXT12c isolated from a deep-sea hydrothermal vent at the East Pacific Rise 9°N. Microbes in the genus Thermococcus are able to grow anaerobically at high temperature, around neutral pH, and some of them under high hydrostatic pressure.

متن کامل

Deep-sea hydrothermal vents: potential hot spots for natural products discovery?

Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 10  شماره 

صفحات  -

تاریخ انتشار 2004